Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.07.22270274

ABSTRACT

We evaluated the clinical and socioeconomic burdens of respiratory disease in a cohort of Guatemalan banana plantation workers. All eligible workers were offered enrollment from June 15 to December 30, 2020, and annually, then followed for influenza-like illnesses (ILI) through: 1) self-reporting to study nurses, 2) sentinel surveillance at health posts, and 3) absenteeism. Workers with ILI submitted nasopharyngeal swabs for influenza, RSV, and SARS-CoV-2 testing, then completed surveys at days 0, 7, and 28. Through October 10, 2021, 1,833 workers developed 169 ILIs (12.0/100 person-years) and 43 (25.4%) of these ILIs were laboratory-confirmed SARS-CoV-2 (3.1/100 person-years). Workers with SARS-CoV-2-positive ILI reported more anosmia (p<0.01), dysgeusia (p<0.01), difficulty concentrating (p=0.01), and irritability (p=0.01), and greater clinical and well-being severity scores (Flu-iiQ) than test-negative ILIs; they also had greater absenteeism (p<0.01) and lost income (median US$127.1, p<0.01). These results support the prioritization of Guatemalan farm workers for COVID-19 vaccination.


Subject(s)
Respiratory Tract Diseases , Mental Disorders , Olfaction Disorders , Dysgeusia , COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.07.21260101

ABSTRACT

We used the dried tube specimen (DTS) procedure to develop the COVID-19 Serology Control Panel ( CSCP). The CSCP contains five well-characterized SARS-CoV-2 pooled plasma samples made available for labs around the world to compare test kits, use for external quality assurance, harmonize laboratory testing, and train laboratory workers.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.11.20236919

ABSTRACT

BackgroundThe coronavirus disease 2019 (COVID-19) pandemic has resulted in severe shortages of personal protective equipment (PPE) necessary to protect front-line healthcare personnel. These shortages underscore the urgent need for simple, efficient, and inexpensive methods to decontaminate SARS-CoV-2-exposed PPE enabling safe reuse of masks and respirators. Efficient decontamination must be available not only in low-resourced settings, but also in well-resourced settings affected by PPE shortages. Methylene blue (MB) photochemical treatment, hitherto with many clinical applications including those used to inactivate virus in plasma, presents a novel approach for widely applicable PPE decontamination. Dry heat (DH) treatment is another potential low-cost decontamination method. MethodsMB and light (MBL) and DH treatments were used to inactivate coronavirus on respirator and mask material. We tested three N95 filtering facepiece respirators (FFRs), two medical masks (MMs), and one cloth community mask (CM). FFR/MM/CM materials were inoculated with SARS-CoV-2 (a Betacoronavirus), murine hepatitis virus (MHV) (a Betacoronavirus), or porcine respiratory coronavirus (PRCV) (an Alphacoronavirus), and treated with 10 {micro}M MB followed by 50,000 lux of broad-spectrum light or 12,500 lux of red light for 30 minutes, or with 75{degrees}C DH for 60 minutes. In parallel, we tested respirator and mask integrity using several standard methods and compared to the FDA-authorized vaporized hydrogen peroxide plus ozone (VHP+O3) decontamination method. Intact FFRs/MMs/CM were subjected to five cycles of decontamination (5CD) to assess integrity using International Standardization Organization (ISO), American Society for Testing and Materials (ASTM) International, National Institute for Occupational Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA) test methods. FindingsOverall, MBL robustly and consistently inactivated all three coronaviruses with at least a 4-log reduction. DH yielded similar results, with the exception of MHV, which was only reduced by 2-log after treatment. FFR/MM integrity was maintained for 5 cycles of MBL or DH treatment, whereas one FFR failed after 5 cycles of VHP+O3. Baseline performance for the CM was variable, but reduction of integrity was minimal. InterpretationMethylene blue with light and DH treatment decontaminated masks and respirators by inactivating three tested coronaviruses without compromising integrity through 5CD. MBL decontamination of masks is effective, low-cost and does not require specialized equipment, making it applicable in all-resource settings. These attractive features support the utilization and continued development of this novel PPE decontamination method.


Subject(s)
Hepatitis, Viral, Human , Masked Hypertension , Photophobia , COVID-19 , Heat Stroke
SELECTION OF CITATIONS
SEARCH DETAIL